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Abstract 

Background:  Kidney stone disease (KSD) is a multifactorial disease involving both environmental and genetic factors, 
whose pathogenesis remains unclear. This study aims to explore the hub genes related to stone formation that could 
serve as potential therapeutic targets.

Methods:  Based on the GSE73680 dataset with 62 samples, differentially expressed genes (DEGs) between Randall’s 
plaque (RP) tissues and normal tissues were screened and weighted gene co-expression network analysis (WGCNA) 
was applied to identify key modules associated with KSD. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) enrichment analysis were performed to explore the biological functions. The protein–protein inter‑
action (PPI) network was constructed to identify hub genes. Meanwhile, CIBERSORT and ssGSEA analysis were used to 
estimate the infiltration level of the immune cells. The correlations between hub genes and immune infiltration levels 
were also investigated. Finally, the top hub gene was selected for further GSEA analysis.

Results:  A total of 116 DEGs, including 73 up-regulated and 43 down-regulated genes, were screened in the dataset. 
The red module was identified as the key module correlated with KSD. 53 genes were obtained for functional enrich‑
ment analysis by taking the intersection of DEGs and genes in the red module. GO analysis showed that these genes 
were mainly involved in extracellular matrix organization (ECM) and extracellular structure organization, and others. 
KEGG analysis revealed that the pathways of aldosterone-regulated sodium reabsorption, cell adhesion molecules, 
arachidonic acid (AA) metabolism, and ECM-receptor interaction were enriched. Through PPI network construction, 
30 hub genes were identified. CIBERSORT analysis revealed a significantly increased proportion of M0 macrophages, 
while ssGSEA revealed no significant differences. Among these hub genes, SPP1, LCN2, MMP7, MUC1, SCNN1A, CLU, 
SLP1, LAMC2, and CYSLTR2 were positively correlated with macrophages infiltration. GSEA analysis found that positive 
regulation of JNK activity was enriched in RP tissues with high SPP1 expression, while negative regulation of IL-1β 
production was enriched in the low-SPP1 subgroup.

Conclusions:  There are 30 hub genes associated with KSD, among which SPP1 is the top hub gene with the most 
extensive links with other hub genes. SPP1 might play a pivotal role in the pathogenesis of KSD, which is expected to 
become a potential therapeutic target, while its interaction with macrophages in KSD needs further investigation.
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Introduction
Kidney stone disease (KSD) is one of the most common 
urological diseases worldwide with high incidence and 
recurrence rates, which contributes to a huge burden 
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on the medical and health care system [1–3]. The most 
common type of stones is calcium oxalate (CaOx) 
mixed with calcium phosphate (CaP), accounting for 
approximately 80%, followed by struvite, uric acid, and 
cysteine [1, 4]. The most widely accepted theory of 
CaOx stone formation is Randall’s plaque (RP) theory, 
in which stone can grow on the renal papillary surface 
attached to interstitial apatite deposits called RPs [5, 6]. 
Although major advances in surgical techniques have 
greatly improved the effectiveness of stone removal, the 
exact mechanisms of stone formation and recurrence 
after surgery remain unclear, making the development 
of effective medical drugs stagnant.

Previous studies have discovered that several genes 
and their coded proteins were strongly linked with 
KSD, such as UMOD, MGP, SPP1, and so on [7]. SPP1, 
also known as osteopontin (OPN), is a secreted pleio-
tropic glycoprotein with diverse physiological and 
pathological functions [8]. As an important modulator 
of biomineralization, SPP1 is thought to be involved 
in stone formation, since RP is considered as a form of 
pathological biomineralization [9]. But previous studies 
showed that SPP1 played a dual role in promoting or 
inhibiting crystallization [10]. Therefore, there has been 
little agreement on the role of SPP1 in the pathogenesis 
of KSD. In addition, SPP1 is a chemical attractant for 
macrophages, which could regulate immune response 
through macrophages infiltration [8]. Recently, mac-
rophage polarization is confirmed to play an important 
role in the development of KSD [11]. However, no study 

has investigated the relationship between SPP1 and 
macrophages in KSD, which needs to be fully explored.

For researchers, renal RP tissue is the key to explor-
ing the underlying molecular mechanisms of KSD. The 
microarray study of the available gene expression profile 
of RP tissue (GSE73680) has linked many genes and path-
ways to KSD, but the analysis is relatively simple and a 
great deal of information has not been extensively mined 
[12]. This study was designed to investigate the GSE73680 
dataset in greater depth through multiple bioinformatic 
methods to explore potential pathogenic genes and ther-
apeutic targets. This study will use WGCNA for the first 
time to explore key modules significantly correlated with 
KSD, screen hub genes in the protein–protein interaction 
(PPI) network, and evaluate immune infiltration levels in 
RP tissues by CIBERSORT and single-sample gene set 
enrichment analysis (ssGSEA). The correlations between 
hub genes and macrophages were also investigated. 
Finally, the top hub gene, SPP1, was selected for subse-
quent gene set enrichment analysis (GSEA).

Methods
Data collection and preprocessing
The flowchart of the study is shown in Fig.  1. The code 
used to perform the whole process was presented in 
Additional file  1.  KSD related datasets were retrieved 
from the Gene Expression Omnibus (GEO) database 
(http://​www.​ncbi.​nlm.​nih.​gov/​geo/) using “kidney stone” 
as a search keyword. Two datasets (GSE73680 and 
GSE117518) which collected transcriptome data from RP 
papillary tissues and normal renal papillary tissues were 

Fig. 1  Flow chart of the whole procedures

http://www.ncbi.nlm.nih.gov/geo/
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obtained. However, GSE117518 was excluded because 
of the small sample size (3 RP papillary tissues, 3 nor-
mal papillary tissues). Hence, GSE73680 was screened 
as an appropriate dataset for further analysis due to the 
relatively large sample size (29 RP papillary tissues and 33 
normal papillary tissues).

The original raw data of each sample in GSE73680 was 
downloaded. As GSE73680 dataset was sequenced by 
Aglient microarray probe, the raw data was read by the 
“limma” package (version 3.48.3), the background of each 
sample was corrected by the “backgroundCorrect” func-
tion in “limma” package, and the data was normalized 
between different arrays by the “normalizeBetweenAr-
rays” function in “limma” package [13]. The following 
steps were sequentially applied: removing the control 
probe, removing the probes that match no gene symbol, 
and removing the duplicated gene probes. Finally, the 
gene matrix was annotated according to the annotation 
files of the Agilent-039494 SurePrint G3 Human GE v2 
8x60K Microarray 039381 (Probe Name version) for fur-
ther analysis.

Identification of differentially expressed genes (DEGs)
GSE73680 dataset enrolled 62 renal papillary tissue sam-
ples, including 29 RP papillary tissues from stone form-
ers, 27 normal papillary tissues from stone formers, and 
6 normal papillary tissues from control patients. The 
“limma” package was used to identify DEGs between 33 
normal papillary tissues and 29 RP papillary tissues with 
the threshold of false discovery rate (FDR) < 0.05 and 
|log2 fold change (FC)| > 1 [13]. The volcano plot of DEGs 
was drawn by the “ggplot2” package (version 3.3.5), and 
the heatmap of DEGs was generated using the “pheat-
map” package (version 1.0.12) in the R software (version 
4.1.1).

Construction of a weighted co‑expression network 
and identification of hub modules
The “WGCNA” package (version 1.70.3) was applied to 
construct the co-expression networks and identify the 
disease-related hub modules [14]. First, the Pearson’s 
correlation matrices were performed for all paired genes 
and a weighted adjacency matrix was constructed with 
the formula amn = |cmn|β (cmn = Pearson’s correlation 
between gene m and gene n; amn = adjacency between 
gene m and gene n). Next, the soft-threshold power value 
that emphasizes strong correlations between genes and 
penalizes weak correlations was calculated and a suitable 
parameter β was screened to build a scale-free network. 
Then, the weighted adjacency matrix was transformed 
into a topological overlap measure (TOM) matrix, which 
could measure the network connectivity of a gene defined 
as the sum of its adjacency with all other genes for the 

network generation [15]. After that, average linkage hier-
archical clustering was conducted to classify genes with 
similar expression profiles into the same gene modules 
according to the TOM-based dissimilarity measure with 
a minimum size of 50 for the gene dendrogram [16]. 
The correlation between module eigengenes and clinical 
traits was assessed by Pearson correlation test to identify 
the significant modules. The KSD-related module was 
selected with the highest coefficient square (R2) and the 
P value < 0.05.

Functional and pathway enrichment analysis
Following the steps above, two gene lists were obtained, 
one for the DEGs, the other one for the most KSD-
related gene modules. Subsequently, the intersection 
of these two gene lists was taken to identify the KSD-
related genes and a Venn diagram was constructed via 
the “VennDiagram” package (version 1.7.1). The Gene 
Ontology (GO) and the Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathways enrichment analysis 
were conducted to define the potential functions and 
pathways between these genes using the “org.Hs.eg.db” 
(version 3.10.0), “clusterProfiler” (version 3.14.3), “enrich-
plot” (version 1.6.1), and the “ggplot2” (version 3.3.5) 
packages in the R software [17, 18]. The GO terms of 
biological processes (BP), molecular functions (MF), and 
cellular components (CC) were respectively evaluated. 
Significant results were determined under the condition 
of adjusted P value < 0.05. The top ten terms were visual-
ized if there were more than ten terms.

Construction of protein–protein interaction (PPI) network 
and identification of hub genes
The PPI network of the KSD-related genes was analyzed 
with the STRING database (http://​string-​db.​org/) and 
visualized using Cytoscape software (version 3.8.2). To 
identify hub genes, the sides of each node were estimated 
and the genes were sorted based on the rank of the con-
nection number of each gene. The top 30 genes with the 
largest edges connected to them were selected as hub 
genes and the gene rank 1st was identified as the top hub 
gene for further GSEA analysis.

Immune infiltration analysis through CIBERSORT 
and ssGSEA
For exploring the different infiltration degrees of immune 
cell types between RP tissues and normal tissues, the 
CIBERSORT algorithm was conducted to classify and 
quantify the abundance of 22 types of immune cells by 
R program [19]. The violin plot was generated using 
the “vioplot” package (version 0.3.7). Spearman corre-
lation analysis was performed to examine the correla-
tions between the hub genes and immune infiltrations. 

http://string-db.org/
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Meanwhile, the ssGSEA was used to estimate the infil-
tration levels of immune cells and immune-related func-
tions in renal papillary tissues using the “GSVA” package 
(version 1.40.1) [20].

Gene set enrichment analysis (GSEA)
SPP1, the most connected node, was identified as the top 
hub gene for GSEA analysis. To further explore the role 
of SPP1 in KSD, 29 RP papillary tissues were divided into 
low- and high-expression groups by the median expres-
sion value of SPP1. Then GSEA analysis was applied to 
compare the differential enhanced functions or pathways 
between low- and high-SPP1 expression groups by GSEA 
software (version 4.1.0) [21]. The c5.go.v7.4.symbols.
gmt datasets in MsigDB were used as reference gene sets 
and GSEA analysis was performed according to default 
parameters [22]. The NOM P value < 0.05 was considered 
significant.

Results
Identification of DEGs
After differential analysis was performed by the 
“limma” R package with the threshold of FDR < 0.05 

and |log2FC| > 1, the difference between 29 RP papil-
lary tissues and 33 normal papillary tissues were pre-
sented in a volcano plot (Fig.  2A). A total of 116 DEGs 
were identified, including 73 up-regulated DEGs and 
43 down-regulated DEGs. The 100 most up-regulated 
or down-regulated DEGs were visualized in a heatmap 
(Fig. 2B).

Construction of a weighted co‑expression network 
and identification of hub modules
The “WGCNA” package was applied to explore the 
gene expression profiles in 29 RP papillary tissues and 
33 normal papillary tissues. The samples were clustered 
hierarchically to remove outliers, but no samples were 
removed by the outliers check in this study (Fig.  3A). 
β = 7 was selected as soft-thresholding power value to 
make the scale-free R2 reach 0.9 and ensure a scale-
free network (Fig.  3B). A total of 11 color modules 
were determined through average linkage clustering 
and dynamic tree cutting (Fig.  3C–D). The correla-
tion between modules and clinical traits was presented 
in Fig.  3E, in which only the red module (r = 0.26, 
P = 0.04) represented a significantly positive correlation 

Fig. 2  Identification of DEGs in GSE73680. A Volcano plot of all DEGs. B Heatmap of the top 100 DEGs

Fig. 3  WGCNA for GSE73680. A Hierarchical clustering tree of 29 RP papillary tissues and 33 normal papillary tissues gene expression patterns. 
B Identification of power value. The red line represents R2 > 0.9 when the power value β is 7. C Module eigengene dendrogram presented the 
relationship of the modules generated by the clustering analysis. D Clustering dendrogram and merging of the gene co-expression modules. Each 
color represents one module. E Heatmap of the correlation between modules and clinical traits. The correlation coefficient and P value between 
the module and clinical traits are shown at the row-column intersection. F Scatter plot of module eigengenes in the red module, which is positively 
correlated with KSD

(See figure on next page.)
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Fig. 3  (See legend on previous page.)
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with stone disease. The number of genes contained 
in the red module is 324 and a significant correla-
tion existed in the module membership and gene sig-
nificance of the red module (Fig.  3F). Hence, the red 

module was selected as the key module for subsequent 
analysis.

Fig. 4  Functional and pathway enrichment analysis. A Venn plot showing the intersection between DEGs and the genes in the red module, and 53 
genes were obtained. B GO enrichment analysis of the obtained 53 genes. C KEGG analysis of the obtained 53 genes
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Functional and pathway enrichment analysis
53 genes were obtained by taking the intersection of 
DEGs and genes in the red module (Fig. 4A). The selected 
genes were studied through GO and KEGG enrich-
ment analysis to explore the biological functions associ-
ated with stone disease. The results of GO enrichment 
analysis were presented in Fig.  4B. Among the biologi-
cal processes (BP) analysis, these genes were associated 
with regulation of extent of cell growth, extracellular 
matrix (ECM) organization, and extracellular structure 
organization. The term of apical plasma membrane was 
enriched in cellular component (CC) analysis, while hep-
arin binding was enriched in molecular function (MF) 
analysis. KEGG enrichment analysis results indicated 
that aldosterone-regulated sodium reabsorption, cell 
adhesion molecules, arachidonic acid (AA) metabolism, 
PI3K-Akt signaling pathway, and ECM-receptor interac-
tion were associated with these genes (Fig. 4C).

Construction of PPI network and identification of hub 
genes
To further investigate the relationships among 53 genes 
at the protein level, the PPI network was constructed 
for candidate hub genes using Cytoscape according to 
STRING database. Up-regulated and down-regulated 
nodes were labeled with red and green, respectively 
(Fig.  5A). The top 30 genes with the largest number of 
adjacent nodes were screened as hub genes (28 up-regu-
lated genes and 2 down-regulated genes), including SPP1, 
AQP2, DPP4, LCN2, MMP7, MUC1, SCNN1A, CLU, 
GPX3, PROM1, and so on (Fig. 5B). The detailed nodes 
and edges of the PPI network was listed in Additional 
file 2: Table S1.

CIBERSORT analysis of immune infiltration
CIBERSORT was performed to assess infiltrating levels 
of 22 immune cells in the RP papillary tissues and normal 
papillary tissues. The barplot displayed the relative com-
position ratio of 22 immune cells in all samples (Fig. 6A). 
Compared with control samples, RP papillary tissues 
harbored a higher proportion of macrophages M0, and 
the difference was statistically significant (P = 0.0093) 
(Fig.  6B). Correlation analysis showed that 21 up-regu-
lated genes had a positive correlation with macrophages 
M0 and 2 down-regulated genes had a negative correla-
tion with macrophages M0 (Fig. 6C).

ssGSEA analysis of immune infiltration
The ssGSEA method was also applied to quantify the 
immune infiltration and the enrichment levels of 27 
immune cells and immune-related functions in samples 
were obtained (Fig. 7A). However, there was no statisti-
cal significance between the two groups. Still, correlation 
analysis showed that 9 up-regulated genes had a positive 
correlation with macrophages (Fig.  7B). Combined with 
two methods, 9 up-regulated genes were strongly posi-
tively related to macrophages infiltration, including SPP1, 
LCN2, MMP7, MUC1, SCNN1A, CLU, SLP1, LAMC2, 
CYSLTR2.

GSEA analysis based on SPP1 expression
RP papillary tissues were divided into two subgroups 
based on the median expression of SPP1. GTP metabolic 
process, histone methylation, positive regulation of Jun 
kinase (JNK) activity, protein K63-linked ubiquitina-
tion, ribosome binding were significantly enriched in the 
high-SPP1 subgroup, while negative regulation of IL-1β 

Fig. 5  PPI network construction. A The PPI network was drawn using Cytoscape, and the network nodes represent proteins (red: up-regulated 
proteins and blue: down-regulated proteins). B Histogram of key genes
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production, negative regulation of IL-1 production, and 
G-protein coupled receptor activity were enriched in the 
low-SPP1 subgroup (Fig. 8).

Discussion
The present study used multiple bioinformatic methods 
to identify KSD-related hub genes and explore the rela-
tionship between these genes and macrophage infiltra-
tion levels based on the GSE73680 dataset. A total of 
116 DEGs were found by differential analysis. WGCNA 
was performed to construct a co-expression network 
and identify key modules associated with KSD, and the 
red module was selected as the key module. By taking 
the intersection of DEGs and genes in the red mod-
ule, 53 genes were subjected to functional and pathway 
enrichment analyses and the PPI network construction. 
30 hub genes were screened based on their numbers of 
adjacent nodes. By analyzing the immune characteris-
tics of KSD patients via two algorithms, CIBERSORT 
analysis revealed a significantly increased propor-
tion of M0 macrophages in RP tissues, while ssGSEA 

revealed no significant differences. Correlation analysis 
showed that SPP1, LCN2, MMP7, MUC1, SCNN1A, 
CLU, SLP1, LAMC2, and CYSLTR2 were positively 
correlated with macrophages infiltration. To our great 
interest, SPP1 had the highest number of edges and was 
selected as the top hub gene for further GSEA analysis.

GO enrichment analysis indicated that genes were 
enriched in ECM organization and extracellular struc-
ture organization. KEGG enrichment analysis suggested 
that genes were bound up with cell adhesion molecules 
and ECM-receptor interaction. Collagen is an impor-
tant component of the ECM, and RPs consist of CaP 
crystals mixed with membrane-bound vesicles, colla-
gen fibers, and other components of the ECM [23]. In 
RP theory, interstitial apatite deposits must grow out-
wards and reach the renal papillary surface to contact 
the pelvic urine for further CaOx deposition [24]. Such 
a breach must require the involvement of ECM and 
extracellular structure reconstruction and remodeling. 
Based on microscopic and analytical studies, Khan et al. 
first proposed that matrix vesicles promote CaP crystals 

Fig. 6  Immune infiltration levels based on CIBERSORT algorithm. A The composition ratio of 22 immune cell types. B Different proportions of 
immune cell subsets between RP papillary tissues and normal papillary tissues. C Display of correlations between hub genes and immune cells
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Fig. 7  Immune infiltration levels based on ssGSEA. A Different proportions of 27 immune cells and immune-related functions between RP papillary 
tissues and normal papillary tissues. B Display of correlations between hub genes and immune cells and immune-related functions
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formation and these calcified deposits progress through 
the mineralization of collagen and other components of 
the ECM, leading to the expansion of RPs [23]. In addi-
tion, the pathway of aldosterone-regulated sodium reab-
sorption and AA metabolism were also significantly 
enriched. A recent study has revealed the influences of 
aldosterone and intra-vascular volume on calcium home-
ostasis and urinary calcium levels, suggesting the poten-
tial role of this pathway in KSD [25]. Baggio et al. found 
higher contents of AA and prostaglandin E2 (PGE2) 
in plasma, higher urinary calcium excretion, as well as 
intestinal calcium absorption in idiopathic calcium stone 
formers compared to healthy controls [26]. Increased AA 
may activate the intestinal and renal transport of oxalate 
to induce hyperoxaluria [27]. PGE2, a bioactive lipid gen-
erated from AA, could increase urinary calcium excre-
tion by affecting renal tubular function and increasing 
intestinal calcium absorption [27]. Further studies are 
needed to clarify the potential implication of these path-
ways in KSD.

Water et  al. first reported the infiltration of mac-
rophages around the interstitial crystals in human kidney 
papillae [28]. Since then, a growing number of studies 
have confirmed the involvement of macrophages in stone 
formation and development, most of which have focused 
on the role of macrophages polarization. Generally, M0 
macrophages can polarize into two main phenotypes, 

pro-inflammatory M1 phenotype and anti-inflammatory 
M2 phenotype, depending on local microenvironment 
[29]. In human kidney tissues, stone formers showed an 
increased gene expression associated with M1 phenotype 
and a decreased gene expression associated with M2 phe-
notype compared with controls [30]. Monocytes can be 
differentiated into M1 macrophages under CaOx crystals 
stimulation and M1 macrophages promote crystal depo-
sition and accelerate stone development via enhancing 
tissue damage and renal inflammation [30–32]. By con-
trast, M2 macrophages are involved in the suppression of 
stone formation due to potent crystal phagocytic ability 
[30, 33, 34]. Thus, there has been an increasing interest 
in altering the macrophages phenotypes as therapeutic 
targets.

Given the importance of macrophages in KSD, immune 
infiltration was assessed in the dataset by applying two 
independent analytical methods. Although there were 
no statistically significant differences in M1 and M2 
macrophages infiltration levels between the two groups, 
CIBERSORT analysis revealed that the proportion of M0 
macrophages in RP papillary tissues was higher than that 
in normal papillary tissues. Non-polarized macrophages 
were designated as M0 phenotype. In vitro studies have 
demonstrated that M0 macrophages were able to inter-
nalize and eliminate COM crystals via phagocytosis [35, 
36]. M0 macrophages could also affect the function of 

Fig. 8  GSEA based on SPP1 expression levels
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other cells. Zou et al. found that renal tubular epithelial 
cells (RTECs) showed increased COM crystal adhesion 
and induced more expression of inflammatory cytokines 
of SPP1, MCP-1, and TNF-a when they were co-cultured 
with M0 macrophages [37]. Exosomes derived from 
COM-treated M0 macrophages can stimulate IL-8 secre-
tion from RTECs and monocytes, activate monocytes 
and neutrophils migration, and enhance macrophages 
phagocytic activity [38, 39]. Moreover, these exosomes 
have higher binding capacity to COM crystals due to exo-
somal membrane fragility, which helps crystal invasion 
through ECM in the renal interstitium [38]. Our results 
further confirmed that macrophages serve an important 
role during the stone formation process.

PPI network was constructed and 30 genes were 
selected as hub genes according to their numbers of 
adjacent nodes. Furthermore, 9 hub genes were strongly 
positively related to macrophages infiltration based on 
two methods, including SPP1, LCN2, MMP7, MUC1, 
SCNN1A, CLU, SLP1, LAMC2, CYSLTR2. SPP1 had 
the highest number of edges and was chosen as the top 
hub gene. In the human kidneys, SPP1 is expressed in 
the thick ascending limbs of the loop of Henle, collect-
ing ducts, and urine [40]. Some studies have reported 
decreased urinary excretion of SPP1 in stone formers 
than controls [41, 42], while others showed increased 
excretion or no difference [43, 44]. Still, SPP1 is identi-
fied as one of the most important organic matrix com-
ponents in calcium stones and numerous studies showed 
that SPP1 expression was increased in animal mod-
els [45]. In  vitro studies found that SSP1 was able to 
inhibit CaOx crystal nucleation, growth, and aggrega-
tion [46–48]. However, the role of SPP1 in crystal adhe-
sion is controversial. Wesson et  al. observed that SPP1 
might favor CaOx dehydrate (COD) formation rather 
than CaOx monohydrate (COM), and COD is less adher-
ent to RTECs, which could reduce crystal attachment 
[49]. By contrast, Yamate et  al. considered SPP1 as a 
promoter of stone formation because of increased crys-
tal adhesion and deposition in its presence [50–52]. The 
reason for two completely different actions may lie in 
the fact that SPP1 has two forms: free and immobilized 
SPP1 play inhibitory and supportive roles in stone for-
mation, respectively [53]. Notably, it has been reported 
that some polymorphisms in the OPN gene may predis-
pose to stone disease [54, 55]. In addition, SPP1 is a sig-
nificant chemical attractant for macrophages, dendritic 
cells, and T cells. RTECs stimulated by crystal deposition 
could secrete SPP1 to induce macrophage migration and 
phagocytosis [56].

GSEA analysis showed that positive regulation of JNK 
activity was significantly enriched in the high-SPP1 

subgroup. Several studies have demonstrated that the 
JNK pathway was activated in RTECs after high oxalate 
or calcium exposure and activation of the JNK path-
way could induce SPP1 expression and crystal deposi-
tion [53, 57, 58]. This is also supported by our results. 
In addition, negative regulation of IL-1β production 
was significantly enriched in the low-SPP1 subgroup. 
Mulay et al. have found that CaOx crystals could acti-
vate intrarenal dendritic cells to secrete IL-1β via the 
NLRP3 inflammasome pathway and lead to renal dam-
age [59]. Hence, IL-1β production might aggravate the 
progression of KSD. The low-SPP1 subgroup may have 
a lower infiltration of immune cells, which leads to a 
decreased production of IL-1β and attenuation of kid-
ney injury.

In this study, the key modules and hub genes related 
to KSD were screened, their biological functions and 
pathways were identified, and the associations between 
hub genes and macrophages were also studied, which 
shed light on the potential pathogenic mechanism of 
KSD and present an avenue for therapeutic explora-
tion. Specifically, the findings suggest that SPP1 plays 
a pivotal role in KSD and the interaction between SPP1 
and macrophages may be crucial for stone formation. 
Therefore, SPP1 could serve as a biomarker for the early 
diagnosis and a target for the treatment of KSD, and 
inhibition of SPP1 might modulate the phenotype of 
macrophages to protect against stone formation.

This study has some limitations. First, there are few 
datasets about KSD in GEO database. Thus, an external 
validation set to verify the accuracy is missing. Second, 
in  vivo and in  vitro studies need to be conducted to 
investigate potential mechanisms of real hub genes and 
macrophages for future clinical translation.

Conclusion
Our research uses WGCNA, combined with immune 
infiltration analysis and correlation analysis to identify 
the hub genes in KSD, which provides further insights 
into potential therapeutic targets for KSD. As the top 
hub gene, SPP1 is widely connected with other hub 
genes, and a great number of studies have confirmed 
the role of SPP1 in stone formation and development. 
However, additional studies are needed to elucidate the 
role the interactions between SPP1 and macrophages 
play in KSD.
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